Use of MSAP Markers to Analyse the Effects of Salt Stress on DNA Methylation in Rapeseed (Brassica napus var. oleifera)

نویسندگان

  • Gianpiero Marconi
  • Roberta Pace
  • Alessandra Traini
  • Lorenzo Raggi
  • Stanley Lutts
  • Marialuisa Chiusano
  • Marcello Guiducci
  • Mario Falcinelli
  • Paolo Benincasa
  • Emidio Albertini
چکیده

Excessive soil salinity is a major ecological and agronomical problem, the adverse effects of which are becoming a serious issue in regions where saline water is used for irrigation. Plants can employ regulatory strategies, such as DNA methylation, to enable relatively rapid adaptation to new conditions. In this regard, cytosine methylation might play an integral role in the regulation of gene expression at both the transcriptional and post-transcriptional levels. Rapeseed, which is the most important oilseed crop in Europe, is classified as being tolerant of salinity, although cultivars can vary substantially in their levels of tolerance. In this study, the Methylation Sensitive Amplified Polymorphism (MSAP) approach was used to assess the extent of cytosine methylation under salinity stress in salinity-tolerant (Exagone) and salinity-sensitive (Toccata) rapeseed cultivars. Our data show that salinity affected the level of DNA methylation. In particular methylation decreased in Exagone and increased in Toccata. Nineteen DNA fragments showing polymorphisms related to differences in methylation were sequenced. In particular, two of these were highly similar to genes involved in stress responses (Lacerata and trehalose-6-phosphatase synthase S4) and were chosen to further characterization. Bisulfite sequencing and quantitative RT-PCR analysis of selected MSAP loci showed that cytosine methylation changes under salinity as well as gene expression varied. In particular, our data show that salinity stress influences the expression of the two stress-related genes. Moreover, we quantified the level of trehalose in Exagone shoots and found that it was correlated to TPS4 expression and, therefore, to DNA methylation. In conclusion, we found that salinity could induce genome-wide changes in DNA methylation status, and that these changes, when averaged across different genotypes and developmental stages, accounted for 16.8% of the total site-specific methylation differences in the rapeseed genome, as detected by MSAP analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diversity Array Technology Markers: Genetic Diversity Analyses and Linkage Map Construction in Rapeseed (Brassica napus L.)

We developed Diversity Array Technology (DArT) markers for application in genetic studies of Brassica napus and other Brassica species with A or C genomes. Genomic representation from 107 diverse genotypes of B. napus L. var. oleifera (rapeseed, AACC genomes) and B. rapa (AA genome) was used to develop a DArT array comprising 11 520 clones generated using PstI/BanII and PstI/BstN1 complexity re...

متن کامل

Sodium Chloride Salt Tolerance Evaluation and Classification of Spring Rapeseed (Brassica napus L.)

Abiotic stresses such as salinity, are factors that severely affects agricultural production. To evaluate the effects of salinity on some morphological and physiological traits related to salt tolerance of 22 genotypes of spring rapeseed cultivars in the vegetative growth stage, an experiment was conducted as a split plot form based on Randomized Complete Blocks Design using levels of salinity:...

متن کامل

تأثیر تنش شوری بر رشد و توزیع یونی در ارقام متحمل و حساس گیاه کلزا (Brassica napus L.)

To examine the response of three rapeseed varieties to salinity stress, a pot experiment was conducted in a glasshouse using a factorial experiment based on a randomized complete block design with three replications. Three levels of NaCl (0, 100 and 200 mM NaCl) were imposed as the salinity treatments at root establishment (leaf 4) stage. In this study, sodium (Na+) and potassium (K+) concentra...

متن کامل

Study of Genetic Variation and Drought Tolerance in Commercial Rapeseed (Brassica napus L.) Cultivars

In order to identify drought stress tolerance in rapeseed, nine commercial rapeseed cultivars (Opera, Karaj1, Karaj2, Karaj3, Zarfam, Okapi, Talayeh, Licord and Modena) were evaluated under two conditions (normal and drought stress) in Kangavar region in the west Iran in 2014-2015 growing season. This research was carried out in a split plot experiment based on completely randomized design in f...

متن کامل

Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings

DNA methylation is responsive to various biotic and abiotic stresses. Heat stress is a serious threat to crop growth and development worldwide. Heat stress results in an array of morphological, physiological and biochemical changes in plants. The relationship between DNA methylation and heat stress in crops is relatively unknown. We investigated the differences in methylation levels and changes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013